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Abstract

An analytical method is carried out to investigate transient free convection boundary layer flow along a vertical surface embedded in
an anisotropic porous medium saturated by a non-Newtonian fluid. The porous medium is anisotropic in permeability with its principal
axes oriented in a direction that is non-coincident with the gravity force. A step increase in wall temperature or in surface heat flux is
considered. On the basis of the modified Darcy power-law model proposed by Pascal [H. Pascal, Rheological behaviour effect of non-
Newtonian fluids on steady and unsteady flow through porous media, Int. J. Numer. Anal. Methods in Geomech. 7 (1983) 207–224] and
the generalized Darcy’s law described by Bear [J. Bear, Dynamics of fluids in porous media. Dover Publications, Elsevier, New York
(1972)], boundary-layer equations are solved exactly by the method of characteristics. Scale analysis is applied to predict the order-
of-magnitudes involved in the boundary layer regime. Analytical expressions are obtained for the limiting time required to reach
steady-state, the boundary-layer thickness and the local Nusselt number in terms of the modified-Darcy Rayleigh number, the power-
law index, the anisotropic permeability ratio, and the orientation angle of the principal axes. It is demonstrated that both the power-law
index and the anisotropic properties have a strong influence on the heat transfer rate.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The flow through a porous medium under the influence
of temperature differences, is one of most considerable and
contemporary subjects, because it finds great applications
in geothermy, geophysics and technology. The practical
interest in convective heat transfer in porous medium is
expanded rapidly, due to the wide range of applications
in engineering fields. These important applications include
such areas as geothermal energy utilization, thermal energy
storage and recoverable systems, petroleum reservoirs,
insulation of high temperature gas–solid reaction vessels,
chemical catalytic convectors, storage of grain, fruits and
vegetables, pollutant dispersion in aquifers, industrial and
agricultural water distribution, buried electrical cables,
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combustion in situ in underground reservoirs for the
enhancement of oil recovery, ceramic radiant porous burn-
ers used in industrial firms as efficient heat transfer devices
and the reduction of hazardous combustion products using
catalytic porous beds. In a review article, Cheng [1] has dis-
cussed various works done in this field as applied to
geothermal.

A cursory inspection of the existing references on con-
vective external flow in porous media reveals that, in gen-
eral, steady-state phenomena have been extensively
studied, whereas unsteady phenomena have received rela-
tively much less attention. The mechanism causing an
unsteady flow may either act at the boundaries, and this
may be through a change in one or more of the dependent
variables, or it may be present within the fluid volume.
Examples of the former include unsteadiness resulting from
the movement of the system boundaries relative to the fluid
and changing the upstream or the inlet conditions.
Unsteadiness of the latter type results from changing the
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Nomenclature

a, b, c constants, Eq. (10)
A boundary-layer thickness, d/H
B constant, Eq. (77)
C constant, Eq. (86)
cp specific heat of fluid at constant pressure
~g gravitational acceleration
k thermal conductivity
K flow permeability tensor, Eq. (8)
K1, K2 flow permeability along the principal axes
K* anisotropic permeability ratio, K1/K2

H height of the surface
I1=n constant, Eq. (73)
n power-law index of non-Newtonian fluid
Nux local Nusselt number, Eqs. (71) and (88)
p pressure
q local heat flux, Eq. (68)
Q dimensionless heat flux, Eqs. (69) and (87)
Rax modified Darcy–Rayleigh number for isother-

mal wall
RaH modified Darcy–Rayleigh number, Eq. (29)
RH modified Darcy–Rayleigh number, Eq. (42)
Rx modified Darcy–Rayleigh number for wall with

constant heat flux
t time
T temperature
~V seepage velocity
u; v velocity components in x, y directions
U ; V dimensionless velocity components in X, Y

directions

x; y cartesian coordinates
X ; Y dimensionless cartesian coordinates

Greek symbols

a thermal diffusivity
b thermal expansion coefficient of the fluid
d thickness of the vertical boundary-layer
DT characteristic scale of temperature
� constant, Eq. (3)
g similarity variable, Eqs. (54) and (75)
c porosity of the porous medium
�h consistency index of the fluid
la apparent dynamic viscosity of the fluid
w stream function
W dimensionless stream function
s dimensionless time
h inclination angle of principal axes
H temperature profile
R density of the fluid
ð.cpÞ heat capacity of the fluid
f constant, Eq. (57)

Subscripts

1 refers to the distance far from the vertical
boundary

a apparent
s refers to steady-state
w refers to wall

4630 G. Degan et al. / International Journal of Heat and Mass Transfer 50 (2007) 4629–4639
body forces, wall and internal energy generation rates, or
the pressure gradients. More complex unsteadiness may
include several of these effects simultaneously. Johnson
and Cheng [2] have done a systematic analysis on the basis
of the boundary-layer and Darcy approximations, regard-
ing the possibility of similarity solutions for various wall
temperature functions. These authors were the first to show
that only very specific solutions exist for unsteady free con-
vection about an inclined flat plate in a porous medium,
and to summarise all of the physical realizable similarity
solutions. Raptis [3] has studied analytically unsteady
two-dimensional free-convective flow through a porous
medium bounded by an infinite vertical plate, when the
temperature of the plate is oscillating with the time about
a constant non-zero mean value. The effects the parameter
of frequency on the velocity field were considered. Another
investigation on the subject was conducted by Raptis and
Perdikis [4] when the free stream velocity and the tempera-
ture in the free stream are considered constant. These
authors have observed that when the permeability param-
eter or the Grashof number increases, the velocity increases
and when the frequency parameter increases, the velocity
decreases. Singh et al. [5] have extended these analyses in
solving the problem by asymptotic expansions develop-
ment in powers of the frequency parameter, and discussed
the effects of physical parameters on the velocity and the
temperature fields. Cheng and Pop [6] have used the
method of integral relations to study the transient free con-
vection about a vertical flat plate embedded in a porous
medium and demonstrated the growth of the boundary-
layer thickness for the case of a step increase in wall tem-
perature. Ingham and Brown [7] were the first to present
detailed solutions for the problem of the free convection
from a vertical flat plate embedded in a porous medium
when the temperature is suddenly raised. This analysis
was extended by Merkin and Zhang [8] who have presented
numerical solutions for the boundary-layer flow generated
on a vertical surface in a porous medium in the case when
the wall is heated by a heat flux rate which is varying as a
power function of the distance from the origin.

In all the published studies discussed earlier, the fluid
saturating the porous medium was assumed to be Newto-
nian. However, in several of the engineering applications
listed at the beginning of this section (such as oil recovery,
food processing, the spreading of contaminants in the envi-
ronment and in various processes in the chemical and
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materials industry) the fluid saturating the porous matrix is
not necessarily Newtonian. For example, in the literature,
the number of existing works in the limit of thermal con-
vection in a porous medium saturated with a non-Newto-
nian fluid driven by temperature gradients alone is very
limited. To this end, Chen and Chen [9] studied numerically
the problem of boundary layer free convection about an
isothermal vertical plate in a porous medium saturated
by a power-law index fluid. Poulikakos and Spatz [10]
investigated the effect of non-Newtonian natural convec-
tion at a melting front in a permeable matrix. Their results
documented the dependence of the local heat transfer rate
at the melting front on the type of power-law fluid saturat-
ing the porous matrix. Recently, Rastogi and Poulikakos
[11] studied the double diffusion from a vertical surface
embedded in a porous medium saturated by a non-Newto-
nian fluid. These authors have found that the variation of
the wall temperature and concentration necessary to yield
a constant heat and species flux at the wall, depended
strongly on the power-law index.

Moreover, in all the above studies, the porous medium is
assumed to be isotropic whereas, in the several applica-
tions, the porous materials are anisotropic. Despite this
fact, natural convection in such anisotropic porous media
has received relatively little attention. The effects of an
anisotropic permeability on thermal convection in a porous
medium began with the investigation of Castinel and Com-
barnous [12], concerning the onset of motion in a horizon-
tal layer heated from below, and continued with the works
of Epherre [13], of Kvernvold and Tyvand [14] and of
Kibbin [15]. Natural convection within enclosures heated
from the side was investigated by Kimura et al. [16] and
Ni and Beckermann [17], for the case when one of the prin-
cipal axes of anisotropy of permeability is aligned with
gravity and by Zhang [18], Degan et al. [19] and Degan
and Vasseur [20] when the principal axes are inclined
with respect to gravity. It was demonstrated by these
authors that the effects of the anisotropy considerably
modify the convective heat transfer. Recently, the effects
of anisotropy on the boundary-layer free convection over
an impermeable vertical plate, were investigated by Ene
[21], using the method of integral relations, for the case
when the principal axes of anisotropy of permeability are
coincident with coordinate axes, and by Vasseur and
Degan [22] when the principal axes are arbitrary oriented.
It was concluded that, if the permeability in the direc-
tion normal to the plate is greater than the permeability
along the plate, then there is an increase in the temperature
field.

The present paper describes an analytical procedure for
obtaining an exact solution for transient natural convec-
tion from a vertical plate embedded in an anisotropic por-
ous medium saturated by a non-Newtonian fluid. A step
increase in wall temperature or in surface heat flux is con-
sidered . The porous medium is anisotropic in permeability
with its principal axes oriented in a direction that is oblique
to the gravity vector. Combining the modified Darcy
power-law model proposed by Pascal [23,24] and the gener-
alized Darcy’s law proposed by Bear [25], a characteriza-
tion of the saturating flow through the porous matrix is
used to describe the non-Newtonian fluid behavior. In
the large Rayleigh number limit, the boundary layer equa-
tions are solved analytically upon introducing an scale
analysis to predict the order-of-magnitudes involved in
the boundary layer regime.
2. Mathematical formulation

We consider here the problem of unsteady heating of a
vertical impermeable plate embedded in a saturated porous
medium characterized by an anisotropic permeability. The
x and y axes are aligned with the vertical and the horizontal
coordinates, respectively. The saturating fluid is a non-
Newtonian fluid of power-law behaviour and the porous
medium is at a uniform temperature T1. At t = 0, the
temperature of the plate or the heat flux at the plate, is
suddenly increased to the constant value Tw or qw, res-
pectively. The anisotropy of the porous medium is charac-
terized by the anisotropy ratio K� ¼ K1=K2 and the
orientation angle h, defined as the angle between the hori-
zontal direction and the principal axis with the permeabil-
ity K2. It is assumed that the fluid and the porous medium
are everywhere in local thermodynamic equilibrium. The
pressure and the temperature are such that the fluid
remains in the liquid phase. The thermophysical properties
of the fluid are assumed constant, except for the density in
the buoyancy term in the momentum equation (i.e., the
Boussinesq approximation).

In accordance with previous reports given by Pascal
[23,24] and following Bear [25], the model of laminar flow
of a non-Newtonian power-law fluid through the porous
medium, describing the generalized Darcy’s law, can be
written as follows

~V ¼ � K
la

rp; ð1Þ

la ¼ �ðu2 þ v2Þðn�1Þ=2
; ð2Þ

� ¼ 2�h

8ðnþ1Þ=2ð
ffiffiffiffiffiffiffiffiffiffiffi
K1K2

p
cÞðn�1Þ=2ð1þ 3nÞn

: ð3Þ

Many of the inelastic non-Newtonian fluids encountered
in engineering processes are known to follow a power-law
model in which the pressure drop is proportional to the
mass flow rate.

In the above equations, ~V is the superficial velocity, c the
porosity of the porous medium, la the apparent viscosity, �h
the consistency index and n the power-law index. In the
above model, the rheological parameters �h and n are
assumed to be temperature independent.

The equations describing conservation of mass, momen-
tum and energy for the present problem are, respectively
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r � ~V ¼ 0; ð4Þ

~V ¼ � K
la

ðrp þ .~gÞ; ð5Þ

r
oT
ot
þr � ~V T � arT

� �
¼ 0; ð6Þ

. ¼ .1½1� bðT � T1Þ�: ð7Þ

In the above equations T is the local equilibrium temper-
ature of the fluid and the porous matrix,~g the gravitational
acceleration, p the pressure, t the time, a ¼ k=ð.cpÞf the
thermal diffusivity (k the thermal conductivity of fluid/por-
ous matrix combination, ð.cpÞf the heat capacity of the
fluid), r ¼ ð.cpÞp=ð.cpÞf the heat capacity ratio, b the coef-
ficient of thermal expansion of the fluid and R the density.
The symmetrical second-order permeability tensor K is
defined as

K ¼ K1 cos2 hþ K2 sin2 h ðK1 � K2Þ sin h cos h

ðK1 � K2Þ sin h cos h K2 cos2 hþ K1 sin2 h

" #
: ð8Þ

Eliminating the pressure term by taking the curl of Eq.
(5) and making use of Eq. (4), we obtain a single momen-
tum, which reads

a
ou
oy
þ c

ou
ox
� ov

oy

� �
� b

ov
ox

¼ 1

la

ola

ox
ð�cuþ bvÞ þ ola

oy
ð�auþ cvÞ þ K1.1bg

oT
oy

� �
;

ð9Þ

where

a ¼ cos2 hþ K� sin2 h

b ¼ sin2 hþ K� cos2 h

c ¼ 1
2
ð1� K�Þ sin 2h

8><
>: ð10Þ
3. Scale analysis

In this section, as t increases, the convection effect
increases and we consider the boundary layer regime for
which most of the fluid motion is restricted to a thin layer
d along the vertical plate. From the momentum equation
(9), it is clear that we may use the boundary-layer hypoth-
esis only when the following conditions:

a
ou
oy
� c

ov
oy
; ð11Þ

a
ou
oy
� c

ou
ox
; ð12Þ

a
ou
oy
� b

ov
ox
; ð13Þ

K1.1bg
oT
oy
� ola

ox
ð�cuþ bvÞ; ð14Þ

K1.1bg
oT
oy
� ola

oy
ð�auþ cvÞ; ð15Þ
are satisfied. So, under the boundary-layer approxima-
tions, at large modified Darcy–Rayleigh number, the gov-
erning equations become:

ou
ox
þ ov

oy
¼ 0; ð16Þ

o

oy
ðunÞ ¼ n

a
K1.1gb

�

oT
oy
; ð17Þ

r
oT
ot
þ u

oT
ox
þ v

oT
oy
¼ a

o
2T

oy2
; ð18Þ

which are to be solved subject to the following initial
condition:

t ¼ 0 : T ðx; y; 0Þ ¼ 0: ð19Þ

The boundary conditions associated with previous gov-
erning equations are:

y ¼ 0: v ¼ 0; T ðx; 0; tÞ ¼ T w ðaÞ
oT
oy ðx; 0; tÞ ¼ �

qw

k ðbÞ ð20Þ

y !1: u ¼ 0; T ðx;1; tÞ ¼ T1: ð21Þ

Following Bejan [26] and recognizing H and d as the x

and y scales, respectively, in the boundary layer of interest
(d� H), the conservation Eqs. (16)–(18) and (20) require
the following balances:

u
H
� v

d
; ð22Þ

a
u
d
� 1

�un�1
K1.1gb

DT
d
; ð23Þ

r
DT

t
; u

DT
H
; v

DT
d
� a

DT

d2
; ð24Þ

where DT = (Tw � T1) for constant wall temperature,
DT � qwd=k for constant wall heat flux, is the characteristic
scale of temperature. It is noticed that the temperature
drop across the boundary layer is of the order of one. In
the next subsections, it will distinguish the result of the
scale analysis for two cases, according to the heating pro-
cess of the wall.

3.1. Isothermal wall

Solving the balances between Eqs. (22)–(24) for d, u, v

and t, we obtain the following results:

d � HRa�1=ð2nÞ
H a1=ð2nÞ; ð25Þ

u � a
H

Ra1=n
H a�1=n; ð26Þ

v � a
H

Ra1=ð2nÞ
H a�1=ð2nÞ; ð27Þ

t � rH 2

a
Ra�1=n

H a1=n; ð28Þ

where the modified Darcy–Rayleigh number RaH, based on
the height of the plate, is defined as

RaH ¼
K1.1gbDTH n

�an
: ð29Þ
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Defining the stream function w related to the velocity
components by

u ¼ ow
oy

v ¼ � ow
ox

ð30Þ

such that the continuity equation, Eq. (4), is automatically
satisfied, the scale for the stream function can be obtained
as follows:

w � aRa1=ð2nÞ
H a�1=ð2nÞ: ð31Þ

The local Nusselt number, NuH defined as the heat
transfer over the pure heat conduction through the vertical
plate, has the following scale:

NuH ¼
hH
k
� Ra1=ð2nÞ

H a�1=ð2nÞ ð32Þ

where h ¼ q=ðT w � T1Þ is the local heat transfer coeffi-
cient, q ¼ �kðoT=oyÞjy¼0 the local heat flux at the heated
surface.

For the special case of an isotropic porous medium
(K� ¼ 1, i.e., a = 1), the scales above reduce to those pre-
dicted by Rastoghi and Poulikakos [11] while studying
the double diffusion boundary layer regime over a vertical
surface embedded in a porous region saturated by a non-
Newtonian fluid.

The conditions of validity of the present boundary layer
analysis now will be discussed. These results are expected
to be valid only when the vertical boundary-layer is slender
(d� H), i.e., for RaH � a. Furthermore, from Eqs. (11)–
(15), (25)–(27), and making use of the results of the above
order-of-magnitude analysis developed in this section, the
boundary layer hypothesis is valid only when the
conditions

b� Ra1=n
H aðn�1Þ=n ð33Þ

and

c� Ra1=ð2nÞ
H að2n�1Þ=ð2nÞ ð34Þ

are satisfied.
3.2. Wall with uniform heat flux

Solving the balances of quantities of interest from previ-
ous equations, using the same calculus procedure when the
plate is heated by a constant heat flux, one can have:

d � HR�1=ð2nþ1Þ
H a1=ð2nþ1Þ; ð35Þ

u � a
H

R2=ð2nþ1Þ
H a�1=ð2nþ1Þ; ð36Þ

v � a
H

R1=ð2nþ1Þ
H a�1=ð2nþ1Þ; ð37Þ

DT � qwH
k

R�1=ð2nþ1Þ
H a1=ð2nþ1Þ; ð38Þ
t � rH 2

a
R�2=ð2nþ1Þ

H a2=ð2nþ1Þ; ð39Þ

w � aR1=ð2nþ1Þ
H a�1=ð2nþ1Þ; ð40Þ

NuH � R1=ð2nþ1Þ
H a�1=ð2nþ1Þ; ð41Þ

where the modified Darcy–Rayleigh number RH, based on
heat flux, is defined as

RH ¼
K1.1gbHnþ1qw

�ank
: ð42Þ

Taking into account the previous scales obtained in this
case, the condition of existence of the vertical boundary-
layer hypothesis formulated by (d� H) becomes RH � a.
Moreover, making use of Eqs. (11)–(14), (15), (36)–(38),
the boundary-layer hypothesis is valid only when the
conditions:

b� R2=ð2nþ1Þ
H að2n�1Þ=ð2nþ1Þ ð43Þ

and

c� R1=ð2nþ1Þ
H að2n�1Þ=ð2nþ1Þ ð44Þ

are satisfied.

4. Resolution

On the one hand, taking H, H=Ra1=ð2nÞ
H , aRa1=n

H =H ,
aRa1=ð2nÞ

H =H , DT and rH 2=ðaRa1=n
H Þ as respective dimen-

sional scales for length, velocities in x and y directions,
temperature and time, concerning the case of isothermal
wall and on the other hand, setting H, H=R1=ð2nþ1Þ

H ,

aR2=ð2nþ1Þ
H =H , aR1=ð2nþ1Þ

H =H , DT and rH 2=ðaR2=ð2nþ1Þ
H Þ as

respective dimensional scales for length, velocities in x

and y directions, temperature and time, for the case of wall
with uniform heat flux, it is found that the dimensionless
boundary-layer equations are

oU
oX
þ oV

oY
¼ 0; ð45Þ

o

oY
ðU nÞ ¼ n

a
oH
oY

; ð46Þ

oH
os
þ U

oH
oX
þ V

oH
oY
¼ o2H

oY 2
: ð47Þ

Integrating Eq. (46) from Y = 0 to Y =1 (region situ-
ated in the free stream), one can have

U ¼ nH
a

� �1=n

: ð48Þ

Making use of the continuity Eq. (45), the integration of
equation of energy (47) yields:

o

os

Z 1

0

HdY þ o

oX

Z 1

0

UHdY ¼ � oH
oY

� �
Y¼0

: ð49Þ

Substituting Eq. (48) into Eq. (49) and rearranging the
resulting expression, we obtain finally:
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o

os

Z 1

0

HdY þ n
a

	 
1=n o

oX

Z 1

0

Hðnþ1Þ=ndY ¼ � oH
oY

� �
Y¼0

:

ð50Þ

The problem of transient natural convection in a porous
medium about a vertical, semi-infinite flat plate with a step
increase in wall temperature or surface heat flux, consid-
ered here, gives rise, as the classical problem of a viscous
boundary layer in a free fluid, to the singularity problem
in passing from the initial stage when the leading edge is
not felt to the steady state defined for large time. For small
values of time, the solutions for velocity and temperature
are independent of X; for large values of time the solutions
are independent of time. The singularity value of time
depends on the vertical distance X. As pointed out by
Ene and Polisevski [27], the heat transfer characteristics
change suddenly from transient, one-dimensional heat con-
duction to steady two-dimensional natural convection. So,
Eq. (50) is to be solved subject to the initial condition (19)
which becomes

s ¼ 0: HðX ; Y ; 0Þ ¼ 0 ð51Þ

and the dimensionless boundary conditions prevailing at
the vertical surface are:

Y ¼ 0: HðX ; 0; sÞ ¼ 1 ðaÞ;
oH
oY ðX ; 0; sÞ ¼ �1 ðbÞ;

�
ð52Þ

In the following subsections, Eq. (50) will be differen-
tially solved by considering the two kinds of boundary con-
ditions (52) imposed in the present analysis.

4.1. Isothermal wall

Following Cheng and Pop [6], with the boundary condi-
tion (52a), we assume a temperature profile of the form

H ¼ erfcðgÞ; ð53Þ

where erfc is the complementary error function and g is ex-
pressed by

g ¼ Y
A

Ra�1=ð2nÞ
H ; ð54Þ

where A ¼ d=H is the dimensionless boundary-layer thick-
ness. Substituting Eqs. (53) and (54) into Eq. (50) and after
integrating yields

oA
os
þ f

n
a

	 
1=n oA
oX
¼ 2

Ra�1=n
H

A
ð55Þ

subject to the initial and boundary conditions

s ¼ 0: AðX ; 0Þ ¼ 0 ðaÞ;
s P 0: AðX ; sÞ ¼ 0 at X ¼ 0 ðbÞ;

�
ð56Þ

where the constant f depending on the power-law index of
the non-Newtonian fluids is expressed as follows

f ¼
ffiffiffi
p
p Z 1

0

½erfcðxÞ�ðnþ1Þ=ndx: ð57Þ
Eq. (55) is a first-order, linear, partial differential equa-
tion of the hyperbolic type and it has been solved exactly
by the method of characteristics and approximately by
the Karman–Polhausen integral-method. Solving by the
method of characteristics, the differential system equivalent
to Eq. (55) is expressed as

dX

f n
a

� �1=n
¼ ds ¼ Ra1=n

H
AdA

2
; ð58Þ

which has the characteristics

dX ¼ f
n
a

	 
1=n
ds: ð59Þ

On each characteristic, A is related by:

Ra1=n
H AdA ¼ 2ds ð60Þ

or

Ra1=n
H f

n
a

	 
1=n
AdA ¼ 2dX ; ð61Þ

depending on whether the characteristic intercepts the s- or
X-axis. Integrating Eq. (60) with the initial condition
(56(a)) gives

A ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
s

Ra1=n
H

s
ð62Þ

and solving Eq. (61) subject to the boundary condition
(56(b)) yields

A ¼ 2ffiffiffi
f
p a

nRaH

� �1=ð2nÞ ffiffiffiffi
X
p

: ð63Þ

As shown by Cheng and Pop [6] and revisited by Ene
and Polisevki [27] in their analyses when studying the same
problem in the case of Newtonian fluid saturating an iso-
tropic porous medium, the expression for A changes from
Eqs. (62),(63) along the limiting line characteristic

s ¼ ss ¼
a
n

	 
1=n X
f
; ð64Þ

so that, Eq. (64) is a straight line which divides the X � s
plane into two regions: a lower region for which A is given
by Eq. (62) and an upper region for which A is given by Eq.
(63). That limiting line characteristic provides the limit time
reached in steady-state regime ss expressed by Eq. (64).

Under these considerations, we have two expressions of
temperature profile corresponding to the two regions. For
s < ss (in the lower region), one can find

H ¼ erfc
Y

2
ffiffiffi
s
p

� �
ð65Þ

and for s > ss (in the upper region), the temperature distri-
bution is expressed as

H ¼ erfc
Y
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f
X

n
a

	 
1=n
r( )

: ð66Þ
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As expected, Eq. (65) is independent of X, and the solution
represents the transient heat conduction in a semi-infinite
porous medium while Eq. (66), however, is independent
of s, and its solution represents steady-state natural
convection.

The local Nusselt number for the region where s > ss,
Nux through the vertical surface is defined, in physical vari-
ables, by

Nux ¼
qx

kðT w � T1Þ
: ð67Þ

Making use of Eqs. (53), (54), (62) and (65), one can rewrite
q as

q ¼ 2kðT w � T1Þ
AH

ffiffiffi
p
p ; ð68Þ

which becomes, after substitution of Eq. (62) valid in the
lower region where transient heat conduction is predomi-
nant, what follows

Q ¼ 1ffiffiffiffiffi
ps
p ; ð69Þ

where Q ¼ q=½kDTRa1=ð2nÞ
H =H � is the dimensionless local sur-

face heat flux.
Taking into account Eqs. (53), (54), (63) and (66) and

Eq. (68) becomes

q ¼ kðT w � T1Þ
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f
p

nRax

a

� �1=n
s

; ð70Þ

valid in the upper zone where convection heat transfer is
predominant (i.e., for s > ss). So, substituting Eq. (70) into
Eq. (67), we can express the local Nusselt number Nux as

Nux ¼
ffiffiffiffiffiffiffiffiffiffi
fn1=n

p

r
Ra1=ð2nÞ

x a�1=ð2nÞ; ð71Þ

where Rax ¼ K1.1gbðT w � T1Þxn=ð�anÞ is the modified
Darcy–Rayleigh number, based on the distance x from
the edge of the surface.

On the other hand, the convective flow is described by
the stream function which can be expressed from Eqs.
(30), (48), (53), (54) and (63) as

W ¼ 2ffiffiffi
f
p n1=ð2nÞI1=nRa1=ð2nÞ

x a�1=ð2nÞ; ð72Þ

where W ¼ w=a and

I1=n ¼
Z 1

0

½erfc ðxÞ�1=ndx: ð73Þ

It is obvious that by setting n = 1 in the limit of a New-
tonian fluid saturating the porous matrix assumed isotropic
in permeability for which the value of the anisotropic
parameter a equals to unity, the results presented in the
present analysis are found to be in a good agreement with
those obtained by Cheng and Pop [6] and by Ene and Pol-
isevski [27].
4.2. Wall with constant heat flux

The problem given by Eq. (50) with the conditions (51)
and (52(b)) may be treated for the case of constant plate
heat flux in similar fashion. Seeking the analogous form
as previously of the solution which satisfies conditions
evoked in this case, one can find after algebraic manipula-
tion what follows

H ¼ A
ffiffiffi
p
p

2
R1=ð2nþ1Þ

H

� �
erfcðgÞ; ð74Þ

where

g ¼ Y
A

R�1=ð2nþ1Þ
H : ð75Þ

Substituting Eqs. (74) and (75) into Eq. (50), the equa-
tion for the boundary-layer thickness is obtained by the
relation:

oA
os
þ B

AR1=ð2nþ1Þ
H

a

( )1=n
oA
oX
¼ AðRH Þ2=ð2nþ1Þ
h i�1

; ð76Þ

where B is expressed by

B ¼ fð2nþ 1Þ
2n

n
ffiffiffi
p
p

2

� �1=n

: ð77Þ

The resolution of Eq. (76) subject to conditions (56(a))
and (56(b)) by the method of characteristics yields the fol-
lowing line expressed by

dX

B AR1=ð2nþ1Þ
H =a

h i1=n
¼ ds ¼ R2=ð2nþ1Þ

H AdA: ð78Þ

In this case, on each characteristic, A is related by:

ðRH Þ2=ð2nþ1ÞAdA ¼ ds ð79Þ

and

ðRH Þ1=nBa�1=nAðnþ1Þ=ndA ¼ dX : ð80Þ

Integrating Eqs. (79) and (80) subject to conditions
(56(a)) and (56(b)), respectively, A is evaluated by

A ¼
ffiffiffiffiffi
2s
p

R�1=ð2nþ1Þ
H ; ð81Þ

and

A ¼ ð2nþ 1Þa1=nX

nBðRH Þ1=n

( )n=ð2nþ1Þ

; ð82Þ

such that, the expression of A changes from Eqs. (81) to
(82) along the limiting line characteristic

s ¼ ss ¼
1

2

ð2nþ 1Þa1=nX
nB

� �2n=ð2nþ1Þ

: ð83Þ



Table 1
Evaluation of constants

n f I1=n n f I1=n

0.5 0.41974 0.33049 1. 0.58578 0.56414
0.6 0.46311 0.38206 1.2 0.62799 0.64439
0.8 0.53254 0.47727 1.4 0.66232 0.71913

Table 2
Values of Nux=Ra1=2

x obtained by the different methods for n = 1 and
isothermal wall situation

a ¼ K� (h = 90�) Nux=Ra1=2
x

Similarity method [22] Present study, Eq. (71)

0.1 (<1.0) 1.404 1.3653
1.0 (isotropic) 0.444[28] 0.4317[6]
10.(>1.0) 0.140 0.1365
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As expected, the X � s plane is divided into two regions,
a lower one for which A is calculated by Eq. (81) and an
upper one for which A is evaluated by Eq. (82). Then,
the limit time ss corresponding to the steady-state regime
is predicted here by Eq. (83).

In the other terms, one can derive the temperature pro-
file valid for each region considered as follows

in a lower region (for which s < ss):

H ¼
ffiffiffiffiffi
ps
2

r
erfc

Yffiffiffiffiffi
2s
p
� �

ð84Þ

and in an upper region (for which s > ss):

H ¼
ffiffiffi
p
p

2
ðCX Þn=ð2nþ1Þerfc Y ðCX Þ�n=ð2nþ1Þ

n o
; ð85Þ

where

C ¼ ð2nþ 1Þa1=n

nB
: ð86Þ

As in the previous case, we have a solution for transient
heat conduction in a semi-infinite plane with a step increase
in surface heat which is in good agreement with the temper-
ature obtained from Eqs. (84) and (74). The solution, Eq.
(85), represents steady heat convection on the plate, and
it is also in good agreement with the exact solution (see
Cheng and Minkowycz [28]).

The heat flux over the vertical surface in the lower
region for which the transient heat conduction prevails is
then, after substitution of Eq. (81) into Eq. (68):

Q ¼
ffiffiffiffiffi
2

ps

r
; ð87Þ

where Q ¼ q=½kDTRa1=ð2nþ1Þ
H =H � is the dimensionless local

surface heat flux.
Considering the situation dominated by convection pat-

tern, when s > ss, and taking into account Eqs. (82) and
(68), the local Nusselt number, Nux, defined by Eq. (67)
is calculated here by the expression

Nux ¼
2ffiffiffi
p
p f

n
ffiffiffi
p
p

2nþ1

� �1=n
" #n=ð2nþ1Þ

R1=ð2nþ1Þ
x a�1=ð2nþ1Þ: ð88Þ

In the same way, from Eqs. (30), (48), (74), (75) and (82)
the stream function is calculated by the expression:

W ¼ 2

f

� �nþ1 n
ffiffiffi
p
p

2

� �" #1=ð2nþ1Þ

I1=nRa1=ð2nþ1Þ
x a�1=ð2nþ1Þ; ð89Þ

where Rx ¼ K1.1gbqxnþ1=ð�ankÞ is the modified Darcy–
Rayleigh number, based on the distance x from the edge
of the surface, for the case of a wall heated by a constant
heat flux.

5. Results and discussion

In order to carry out subsequent analysis of the effects of
anisotropic parameters and to investigate the influence of
power-law indexes of non-Newtonian fluids saturating
the porous matrix on thermal convective flow in the neigh-
borhood of the vertical surface with a sudden increase in
the temperature, it is convenient to evaluate the constants
f and I1=n expressed by Eqs. (57) and (73), respectively.
These equations are solved numerically by Romberg proce-
dure coupled with extrapolation Richardson method to
have the best approximation of the exact solution. The
results found here are presented in Table 1.

Moreover, Table 2 is presented here to prove the validity
of the present analysis, when compared the result obtained
for the parameter Nux=ðRaxÞ1=2 according Eq. (71), for the
case of a Newtonian fluid (i.e., n = 1) and for isothermal
wall, with that which has been found by Vasseur and
Degan [22], solving the problem by a consistent numerical
procedure coupled with similarity method in an anisotropic
porous medium case, and by Cheng and Minkowycz [28],
using the similarity transformation for isotropic porous
medium situation. It is seen that the result found here by
the method of characteristics is in excellent agreement with
that obtained by Cheng and Pop [6] when the porous med-
ium is hydrodynamically isotropic and saturated by a New-
tonian fluid.

Fig. 1 shows the effect of the power-law index of non-
Newtonian fluid on the limiting line characteristic given
par Eq. (64) and expressed by the time taken to reach
steady-state flow ss, when the transient free convection in
the porous medium occurs as a result of a step increase
in wall temperature. In Fig. 1, it is observed that, when
the anisotropic parameters are held constant, for example,
for h = 45� and K� ¼ 0:1, each limiting line characteristic
corresponding to a fixed power-law index n is a straight line
which divides, as expected, the X � s plane into two
regions, a lower one dominated by a pure conduction
regime for s < ss and the upper one dominated by convec-
tive heat transfer for s P ss. Moreover, it is seen that, as
the power-law index increases from n = 0.6 (corresponding
to a shear-thinning fluid) to n = 1.4 attributed to a shear-
thickening fluid, the upper region becomes progressively
larger. This behavior can be explained by the fact that in



Fig. 1. Effect of the power-law index n on the limiting line characteristic
for h ¼ 45	, K� ¼ 0:1 and for a step increase in wall temperature situation.

Fig. 3. Effect of the orientation angle h of the principal axes on the
limiting line characteristic for n = 0.8, K� ¼ 10 and for a step increase in
wall temperature case.
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the upper region where convection effect is considerable
over the limiting time, the local heat transfer rate calcu-
lated by Eq. (71) becomes Nux=Ra0:83

x ¼ 0:4127 when
n = 0.6 and Nux=Ra0:35

x ¼ 0:6408 when n = 1.4. So, convec-
tion motion is enhanced, taking place in the upper region
which becomes more and more important than the lower
one, as the power-law n index is made higher.

The limiting steady-state time characteristic ss is pre-
sented in Fig. 2 as a function of the position X from the
edge of the vertical surface to investigate the effect of the
anisotropic permeability ratio K* for n = 1.2 and h = 30�,
when the wall is heated isothermally. It is seen that, for a
given value of the distance X considered from the edge of
the wall, the time taken by the heating process transfer to
reach steady-state pattern for which convection occurs
increases with an increase in permeability ratio K*. So, con-
vection becomes more and more considerable and occupies
upper regions which become more and more large than the
lower regions, as K* is made smaller. This trend comes
Fig. 2. Effect of the anisotropic permeability ratio K* on the limiting line
characteristic for n = 1.2, h = 30� and for isothermal wall case.
from the fact that, according to Eq. (64), when the param-
eters n, h and X are held constant, ss depends solely on
(K�0:83) and is proportional to this latter. On the other
hand, the same behavior is observed in Fig. 3 illustrating
the variation of ss versus X, for different values of h,
n = 0.8 and K� ¼ 10, and when a step of increase in wall
temperature is considered. Therefore, the limiting time to
reach steady-state regime increases with an increase in ori-
entation angle of the principal axes of the porous matrix,
when other parameters are held constant.

Fig. 4 illustrates the effects of varying the modified
Darcy–Rayleigh number RaH and the time s (lower than
the limiting time required to reach steady-state ss) on the
boundary-layer thickness A for n = 0.5, when the surface
is heated isothermally. As expected, the boundary-layer
thickness A decreases drastically as RaH is made higher,
giving rise to a channeling of convective heat flow near
the vertical surface. Moreover, it is seen that, for a given
Fig. 4. Effect of the time s (<ss) on the boundary-layer thickness A for
n = 0.5 and various values of RaH, when the surface is isothermally
heated.



Fig. 5. Effect of the time s (<ss) on the boundary-layer thickness A for
RaH ¼ 30 and various values of n, when the surface is isothermally heated.

4638 G. Degan et al. / International Journal of Heat and Mass Transfer 50 (2007) 4629–4639
value of the time s (lower than ss), the boundary-layer
thickness A decreases with an in increase in the modified
Darcy–Rayleigh RaH. This trend follows from the fact that,
according to Eq. (62), the boundary-layer thickness A is
proportional to s1=2 and inversely proportional to Ra1=ð2nÞ

H

such that, upon increasing RaH, A drops progressively
and becomes less and less affected by s.

Another view of the effects of the varying of the power-
law index n and the time s (<ss) for RaH ¼ 30 and for a step
increase in wall temperature, is depicted in Fig. 5. It is
observed that the boundary-layer thickness A increases
with an increase in power-law index n of non-Newtonian
fluids. This can be explained that for a fixed value of s,
according to Eq. (62), when n! 0, Ra�1=ð2nÞ

H ! 0, and
therefore A! 0. So, in Fig. 5, the boundary-layer thickness
A drops progressively as n is made weaker, independently
of s.

6. Conclusion

The problem of transient natural convection in a porous
medium adjacent to a vertical, semi-infinite surface with a
step increase in wall temperature or surface heat flux.
The porous medium is anisotropic in permeability whose
principal axes are non-coincident with the gravity vector.
The porous matrix is saturated by non-Newtonian fluids.
With the formulation of the problem on the basis of the
modified Darcy power-law model of Pascal [23,24] and
the generalized Darcy’s law proposed by Bear [25], bound-
ary-layer equations are solved analytically by the method
of characteristics, as time is taken into account in equation
of energy. From the results, the following remarks are

(1) The problem considered gives rise to the singularity
problem in passing from the initial stage when the
leading edge effect is not felt to the steady state
defined for large times. The limiting line characteristic
represents the time required to reach the steady state
ss and the singularity value of time for which the heat
transfer characteristics change suddenly from tran-
sient one-dimensional heat conduction to steady
two-dimensional natural convection.

(2) For small values of time (s < ss), the solutions for
flow and temperature fields are dependent solely of
time and the heat transfer due by pure conduction
in transient regime are independent on the aniso-
tropic parameters of the porous matrix and the
power-law indexes of non-Newtonian fluids.

(3) For large values of time (s > ss), the solutions for
velocity, temperature and heat transfer rate valid in
steady regime are independent of time, and depend
strongly on anisotropic parameters, on the power-
law indexes, and on the vertical distance from the
edge of the surface.

(4) At steady regime from the limiting line characteristic,
the convection heat transfer is enhanced when the
power-law index n of non-Newtonian fluids is
increased.

(5) The limiting time to reach steady-state increases with
an increase in anisotropic permeability ratio and with
an increase in orientation angle of the principal axes
of the porous medium, and that, independently of the
heating process of the vertical surface.
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